I B.Tech Regular Examinations, June 2010 MATHEMATICS-1

Common to ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, EIE, CSE, ECE, EEE, CE

Time: 3 hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Find the radius of curvature at any point on $y^2 = 4ax$ and hence show that the radius of curvature at the vertex is equal to the semi latus rectum.
 - (b) Trace the curve $r = a(1 + \cos \theta)$ [7+8]
- 2. (a) Find the volume of Spherical cap of height h cut off from a sphere of radius a.

(b) Evaluate
$$\int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r^2 Cos\theta dr d\theta$$
 [8+7]

- 3. (a) Solve the differential equation $(D^2 + D + 1)y = x^3$
 - (b) Solve the differential equation $(D^2 + 1)y = \sin x \sin 2x$ [8+7]
- 4. (a) Form the differential equation by eliminating arbitrary constants $y = a x^3 + bx^2$
 - (b) Solve the differential equation $x^3 \frac{dy}{dx} = y^3 + y^2 \sqrt{y^2 x^2}$
 - (c) Find the orthogonal Trajectories of the family of curves $x^2+y^2=a^2$ [4+6+5]
- 5. (a) If $u = x^2 2y$, v = x + y + z, w = x 2y + 3z find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$
 - (b) Find the maximum and minimum values of $f(x) = x^3 + 3xy^2 3x^2 3y^2 + 4$ [8+7]
- 6. (a) Find the constants a and b so that the surface $ax^2 byz = (a+2)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point (-1,1,2).
 - (b) Evaluate $\oint_e (yzdx + xzdy + xydz)$ over arc of a helix $x = a\cos t, y = a\sin t, z = kt$ as t varies from 0 to 2π [8+7]
- 7. (a) Find $L\left[\frac{e^{-t}\sin t}{t}\right]$
 - (b) Solve the following differential equation using the Laplace transforms $\frac{d^2x}{dt^2} 2\frac{dx}{dt} + x = e^{2t} \text{ with } x(0) = 2, \ \frac{dx}{dt} = -1 \ at \ t = 0$ [8+7]
- 8. (a) Test the convergence of the series $\frac{(n!)^2x^{2n}}{(2n)!}$
 - (b) Test the convergence of the series $\sum \frac{\left(\sqrt{5}-1\right)^n}{n^2+1}$ [7+8]
